Instituto Superior Técnico de Lisboa

António Sá da Costa

Former President of APREN, Portuguese Renewable Energy Association

100% Renewable electricity in Portugal – Yes it is possible

Lisbon, November 4TH 2020

> Renewable Energy in Portugal

≺(

Renewable Energy in Portugal >

Evolution of the Portuguese electricity mix

> Renewable Energy in Portugal

2017 National Electricity Production by Energy Source

- In 2017 renewable energies represented 42% of the overall national electricity production.
- Concerning the energy electricity consumption, renewables represented 46% (renewables 23.504 GWh, consumption - 51.297 GWh)

Source: REN, EDA, EEM; APREN's analysis

> Renewable Energy in Portugal

2018 Electricity Production by Energy Source in mainland Portugal

• In the first semester of 2018, renewable electricity represented 55,3% (20.710 GWh) of the overall electricity production in mainland Portugal (37.451 GWh).

Source: REN; APREN's analysis

Source: REN; APREN's analysis

Renewable Energy in Portugal > Load Diagram of March 2018 12 Renewables = 103,6 % of the demand 10 8 6 **6** 0 hours 69 hours 4 2 0 ົດ 9 Ξ 2 13 4 15 Other RES Hydro Wind Fossil Honorts ---- Consumption ---- Pumping

Source: REN; APREN's analysis

> Renewable Energy in Portugal

Electricity System with 100% RES

Source: CNN

> Renewable Energy in Portugal

> Electricity Market

> The Iberian Electricity Market (MIBEL)

> Renewables' Economic Benefits

Cumulative values from 2010 to 2017

- The impact of renewable electricity on the Spot Market due to the merit order was 6 610 M€ between 2010 and 2017;
- The reduction on the imports of fossil resources resulted in a saving of 6,030 M€ in the energy bill;
- The savings from emission licenses were 524 M€;
- These savings outweigh the costs related to renewables (-6 527 M€).

> Evolution of RES Technologies Costs

Custos nivelados de produção de electricidade no Sul da Europa¹ $\ensuremath{\mathfrak{\epsilon}_{_{16}}}$ /MWh, 2016

 The electricity market is making a transition from power plants with huge variable costs to power plants with low variable costs.

The marginal market becomes inadequate for RES.

Source: EDP; APREN's analysis

> Decarbonization of the Electric Sector

> Decarbonization of the Electric Sector

Total	Forests Absortion (without fires)	Net Values
69	8	61

Units - Megatonnes

Note: Electricity Sector Emissions refer to 2015 and 2016's average

Source: Emissions Inventory 2017; APREN's analysis

> Decarbonization of the Electric Sector

Total	Forests Absortion (without fires)	Net Values
54,4	8	46,4

Units - Megatonnes

Note: Electricity Sector Emissions refer to 2015 and 2016's average

Source: Emissions Inventory 2017; APREN's analysis

> Decarbonization of the Electric Sector

Sectoral Emissions – 100% RES-E and 0% CO_2 Emissions in Transport

Total	Forests Absortion (without fires)	Net Values
38,2	8	30,2

Units - Megatonnes

Note: Electricity Sector Emissions refer to 2015 and 2016's average

Source: Emissions Inventory 2017; APREN's analysis

> Decarbonization of the Electric Sector

Sectoral Emissions - Total Decarbonization Others Waste 0,1 1,3 Agriculture 1,4 Electricity n Industrial Processes 1.6 Transports n Legend: **Emissions Reduction** Energy used in Industrial Processes 3,6 Source: Emissions Inventory 2017; APREN's analysis

Total	Forests Absortion (without fires)	Net Values
8	8	0

Units - Megatonnes

Note: Electricity Sector Emissions refer to 2015 and 2016's average

> Electricity Sector Outlook

> Electricity Sector Outlook

Mainland Portugal

2016

Consumption	% Renewable in Consumption	Renewable Electricity [normalized]	Wind	Hydro	Solar	Biomass	RES Total
51 TWh	55 %	28 TWh	5.2 GW	6.8 GW	0.4 GW	0.7 GW	13.2 GW

2030*

Consumption	% Renewable in Consumption	Renewable Electricity [normalized]	Wind	Hydro	Solar	Biomass	RES Total
54 TWh	80 %	43,2 TWh	7 GW	8,4 GW	6,6 GW	0.8 GW	22,9 GW

* Needs to be actualized with the last forecasts

> Electricity Sector Outlook

Mainland Portugal

2016-2030

Consumption	% Renewable in Consumption	Renewable Electricity [normalized]	Wind	Hydro	Solar	Biomass	RES Total
+ 3 TWh	+ 25 %	+ 15,2 TWh	+ 1,8 GW	+ 1,6 GW	+ 6,2 GW	+ 0.1 GW	+ 9,7 GW

- Increase in consumption
- Increase in renewable capacity

> Outlook of the Electricity Sector in 2040

100% Renewable in net values – Mainland Portugal

> Outlook of the Electricity Sector in 2040

Renewable Electricity in the Portuguese Energy System until 2050

> Renewable Electricity in the Portuguese Energy System until 2050

> Renewable Electricity in the Portuguese Energy System until 2050

> Renewable Electricity in the Portuguese Energy System until 2050

YES IT IS POSSIBLE TO ACHIEVE A 100 % RENEWABLE ELECTRICITY SYSTEM HYDROELECTRIC ENERGY STORAGE WILL BE ESSENTIAL TO REACH THAT GOAL

So...

LET'S DO IT!

Thank you!

For more information go to: <u>www.apren.pt</u> Or send us an e-mail: <u>dep.tecnico@apren.pt</u>